
Pyjama (PJ) help - v2

March 6, 2017

This help documentation is used for Pyjama version from v2.0.0.

1 Using the Pyjama compiler
In default, Pyjama v2.x.x compiler expects a standard .java file, and it compiles
the .java file into the bytecode (.class file). In the .java file, users can use
any comment-like OpenMP directives (see all Pyjama supported directives in
Section 2) to parallel the original sequential Java code. In another word, if
users compile the Java code by a standard javac compiler, the program will run
sequentially. If the Java code is compiled by Pyjama compiler, the program will
run in a parallel way.

compiling options [v2.x.x]
From version 2.x.x, Pyjama compiler provides more compiling options. In de-
fault, the compiler expects a .java file which contains OpenMP-like comment.
Moreover, users can specify other input file and output file options.

usage: java -jar Pyjamav2.0.0.jar [options]
-cp, --classpath <PATH> specify where to find user class files and annotation

processors;
-d, --directory <DIR> output file directory;
-h, --help print usage of Pyjama compiler;
-j2c, --javatoclass (default) compile .java file to paralleled .class file;
-j2j, --javatojava compile .java file to paralleled .java file. Remember new

parallel java file will overwrite old sequential java file, if there is no target
directory specified;

-p2c, --pjtoclass compile .pj file to paralleled .class file;
-p2j, --pjtojava compile .pj file to paralleled .java file.

No IDE plugin supported
Unfortunately, Pyjama v2 does not have a paired IDE plugin at the moment,
but programmers can easily use scripts to compile a Java project by calling the
Pyjama command line.

1

2 Specifications
The current implementation of the Java OpenMP compiler only contains sup-
port for some of the most common and important features of OpenMP. The
following directives are believed to be fairly stable. With the current imple-
mentation, the ordering of some of the optional clauses matters (but in a full
implementation, the ordering shouldn’t matter). The ordering expected is spec-
ified. anything in square brackets is optional:

• //#omp atomic

• //#omp parallel [“if” “(“ expression “)”] [dataClauseList]

• //#omp for [dataClauseList] [schedule] [“ordered”] [“nowait”]

• //#omp parallel for [“if” “(“ expression “)”][dataClauseList] [schedule] [
“ordered”] [“nowait”]

• //#omp ordered

• //#omp section

• //#omp sections [dataClauseList] [“nowait”]

• //#omp parallel sections [“async”] [“if” “(“ expression “)”] [dataClauseList]
[“nowait”]

• //#omp single [dataClauseList]

• //#omp master

• //#omp critical [identifierName]

• //#omp barrier

• //#omp flush [“(“ argumentList “)”]

• //#omp freeguithread [parallel]

• //#omp target virtual

• //#omp async-call

Some of the above non-terminals are expanded below:

• dataClauseList -> (dataClause) +

• dataClause -> “firstprivate” “(“ argumentCopyList “)” | “lastprivate” “(“
argumentList “)” | “shared” “(“ argumentList “)” | “reduction” “(“ reduc-
tionOperator, argumentCopyList “)”

When using firstprivate dataclause for class type variables, you should explicitly
define constructor that comfort with ClassName(ClassName C);

2

• schedule -> “schedule” “(“ kind [“,” chunk] “)”

• kind -> “static” | “dynamic” | “guided”

• chunk -> integer constant or integer variable

• argumentList -> variableName (“,” variableName)*

• argumentCopyList -> copyArgPair (“,” copyArgPair)*

• copyArgPair -> [copyVariable “#”] variableName

• copyVariable -> an instance of java_omp.Copy<T>

• reductionOperator -> “+” | “*” | userDefinedReduction

• userDefinedReduction -> function name should conform with <T> reduc-
tionFunctionName(<T> var1, <T> var2);

The follow are not supported or implemented yet:

• //#omp threadprivate

• //#omp dataclause: private

3 More detailed usage of using customized reduc-
tion operation with Pyjama (and Redlib)

Pyjama supports high-level reduction operation which traditional OpenMP does
not provide. Programmers can define their own function to perform reduction
onto a specified parameter.

Similar to primitive data reduction, a reduction data clause is followed with
the operator and its related variable. For example, //#omp parallel reduc-
tion(+:a) will perform a plus reduction after all threads finish their own exe-
cutions. For a customized reduction, programmers can simply replace the binary
operator to a function name, e.g. //#omp parallel reduction(yourReductionFunction:a).
However, the function definition should in conform with the following format:

• T reductionFunctionName(T var1, T var2)

This function takes two parameters with same data type T, and return the
reduced value with type T. For example:
public class xPoint {

private int x ;
private int y ;
public stat ic void main (St r ing [] argc) {

xPoint p = new xPoint (0 , 0) ;
//#omp p a r a l l e l r educ t ion (xPointReduction : p)
{

// p a r a l l e l reg ion code
}

3

}
public xPoint xPointReduction (xPoint p1 , xPoint p2) {

// user de f ined reduc t ion operat ion here
. . .

}
. . .

}

Should be noticed that, if your reduction function is another class function
call, you should also tell Pyjama compiler which class the function belongs to.
Say ClassA.reductionFunction.

You can also use Redlib build-in reduction operations to facilitate your pro-
gramming. A simple example using Redlib and Pyjama is here:
public Class T SetUnion implements Reduction<Set<T>>{

public Set<T> reduce (Set<T> f i r s t , Set<T> second){
for (T t : second){

f i r s t . add (t) ;
}

return f i r s t ;
}

}
. . .
double [] array = . . . ;
Set<Point> s e t = new Set<point >() ;
//#omp p a r a l l e l f o r shared (array) reduc t ion (SetUnion . reduce : s e t)
for (int i =0; i<max ; i++) {

Point p = computation (array [i]) ;
s e t . add (p) ;

}
. . .

4 Limitations
Since Pyjama is a research project, there are several limitations both for Pyjama
compiler and Pyjama runtime support. Hereby we list all the limitations and
disability Pyjama has as far we known.

1. You may find that Pyjama is poor for detecting errors in your source code
when compiling. When Pyjama compiler encounters the first token it
does not expect, it will throw a parsing exception and stop the compiling.
Because current Pyjama parser is very weak in error recovery. What you
can do is double check your code before compiling or use our Pyjama
plugin for eclipse IDE, which can detect several type of errors on the fly
when you are coding.

2. Currently in Pyjama, //#omp atomic directive is implemented the same
as //#omp critical. There is no difference between these two. In another
word, in Pyjama now, OpenMP atomic is implemented as lock based ma-
nipulation on variable, which is the exact same way how critical directive
implemented. Because in java language, source code cannot be directly

4

converted into machine code, in which atomic hardware synchronization
instructions can be used (CMPXCHG or LL/SC). Java standard library
provide atomic data type for people to use non-block data update, such
as AtomicInteger class. This may be the substitution for real atomic data
operation in your program.

3. Pyjama does not support nested parallel. When nested parallel regions
are used, only the outermost parallel region will be activated. In the
further Pyjama will concern about nested parallel activation. But for now,
runtime only activate once when it encounter different level of parallel
regions.

4. There are limitations that class data fields are not allowed to appear in any
data clauses. Class data fields variables, including static and non-static,
are in nature shared. In parallel region, class data fields can be used, but
proper synchronization is necessary.

5. One limitation in //#omp parallel for directive, if num_threads(n) clause
is going to be used, please put it before any data clauses and schedule
clause (including shared, firstprivate, lastprivate, schedule).

6. The global lock, when using critical directive, identifier is invalid, this
limitation may confine the fine grained locking for several experiments.

7. There could be compiling error when using //#omp for directive. Some-
times, the expression like for(int i=0;i<n-1;i++) cannot go through compil-
ing, try to use for(int i=0;i<(n-1);i++), by adding brackets. This problem
occurs because of current defect of Pyjama compiler.

8. When using //#omp target virtual directives, it is not allowed to return
any value in the target virtual construct. It may cause compiling error or
make unexpected execution behavior.

5 Contact
It would be great if you could send code that fails to do as you expect, please
see contacts below. If you receive any unimplemented feature exceptions, or any
exceptions that you feel should be working but aren’t, it would be great to hear
from you so that they can be corrected. Thanks.

If you have any further questions, or you find some problems, suggestions or
comments about the Java OpenMP compiler, please email fxin927@aucklanduni.ac.nz
or n.giacaman@auckland.ac.nz or o.sinnen@auckland.ac.nz.

5

